## S3 method for class 'iModel':
stepwise(object,
criterion = "aic", alpha = NULL, type ="decomposable",
search="all", steps = 1000, k = 2,
direction = "backward", fixinMAT=NULL, fixoutMAT=NULL,
details = 0, trace = 2, ...)
backward(object,
criterion = "aic", alpha = NULL, type = "decomposable",
search="all", steps = 1000, k = 2,
fixinMAT=NULL, details = 1, trace = 2,...)
forward(object,
criterion = "aic", alpha = NULL, type = "decomposable",
search="all", steps = 1000, k = 2,
fixoutMAT=NULL, details = 1, trace = 2,...)iModel model object"aic" or "test" (for
significance test)criterion="aic", alpha defaults to
0; when criterion="test", alpha defaults to 0.05."decomposable" or
"unrestricted". If type="decomposable" and the initial
model is decompsable, then the search is among decomposable models
only.'all' (greedy) or 'headlong'
(search edges randomly; stop when an improvement has been found).criterion="aic". Only k=2 gives
genuine AIC."backward"
or "forward".testdelete
(for testInEdges) and testadd (for testOutEdges).iModel model object.cmod
dmod
mmod
testInEdges
testOutEdgesdata(reinis)
## The saturated model
m1 <- dmod(~.^., data=reinis)
m2 <- stepwise(m1)
m2Run the code above in your browser using DataLab